
656 S H O R T  C O M M U N I C A T I O N S  

Acta Cryst. (1972). A28, 656 

A m a t h e m a t i c a l  procedure  for  super impos ing  a tomic  coordinates  o f  proteins .  By A. D. MCLACHLAN, Medical 
Research Council, Laboratory of  Molecular Biology, Hills Road, Cambridge, England 

(Received 9 May'1972) 

A procedure is given which determines the best rigid-body rotation and translation that matches a given 
set of measured atomic coordinates to a fixed set of guide coordinates and minimizes the weighted sum of 
squared deviations. 

It is often useful to compare two sets of coordinates for the 
same set of atoms in a protein by finding a rigid-body rota- 
tion and translation which makes them coincide as closely 
as possible. Examples ale the comparison of chymotryp- 
sinogen with chymotrypsin (Freer, Kraut,  Robertus, Wright 
& Xuong, 1970), insect haemoglobin with myoglobin (Hu- 
ber, Epp, Steigemann & Formanek,  1971), or the fitting 
of a rigid haem group to approximate measured coordinates. 
The problem can be stated as follows. Given two sets (A 
and B) of N vectors a,,b~, (~ = 1 . . . .  N) find an orthogonal 
rotation matrix R with determinant + 1, and a translation 
t which converts the coordinates a~,(i= 1,2, 3) to 

rl,= ~ Rtjaj,+ t~ (1) 
J 

and mi.fimizes the residual 

E= ½ ~ w~(r,,- b,,) 2 . (2) 

Here w, is a weight assigned to each atom. The translation 
can be removed from the problem by ensuring that the 
centroids of both sets A and B have already been shifted to 
the origin of coordinates. Diamond (1966) has described a 
procedure for finding a suitable rotation, but it does not 
necessarily lead to a minimum for E, and it breaks down if 
either set of atoms lies in a plane. The procedure given here 
overcomes these difficulties. 

Consider a small additional rotation through an angle 0 
about the direction l with direction cosines l~,12,13. To 
second order in 0, the vector r becomes 

r + OAr + ½0^(0^r) (3) 

where 0 = 10. The corresponding change in E is 

OE= - ~ g,O, + ½ ~ O,T,jOj . (4) 
i i , j  

Here 
g = ~ w~r~^b~ (5) 

is the couple that would be produced by a force of strength 
w~(b~-r~) acting at each point re. 
Now introduce the matrices 

Uij= ~ w~a~bj~ V~j= ~. w~ri~bj~ . (6) 
ot o~ 

The antisymmetric part of V gives the couple, since g~= 
V23-V32 and so on. Also the symmetric part yields the 
second derivative matrix 

with 
Tlj = vfitj - ½(Vlj+ V j3 (7) 

v :  VII Ji- V22-1- V33. (8) 

The residual E can also be calculated directly from the 
diagonal sum of V, since 

i s  

= ½ ~ w,(a~ + b~ 2) - v .  (9) 

Another useful property of the matrix V is that it trans- 
forms simply under rotations, with 

V = R U .  (10) 

The least-squares fitting problem thus reduces to one of 
finding a rotation R such that V is symmetric, T is positive 
definite, and the diagonal sum v is therefore a maximum. 
Once the initial matrix U has been formed the atomic 
coordinates need not be consulted again. 

Iterative solution 

A succession of rotations are applied. At positions far from 
the minimum one can use a steepest-descent method, sug- 
gested by Jacobi's method for diagonalizing a real sym- 
metric matrix (Wilkinson, 1965; Modern Computing 
Methods, 1961). To derive it consider the situation in two 
dimensions 

V =  \sin 0 cos U21 U 2 2 ]  ° 

Here a rotation defined by 

A cos 0=  UXl+ U22, A sin 0=  U12- U21 (12) 

A 2= (Ull + U22) 2 + (U12 - U21) 2 (1 3) 

makes V diagonal and alters the diagonal sum from A cos 0 
to A. In three dimensions the axis of rotation I is taken 
parallel to that of the couple g, and the angle is given by 

A cos O= u - ~ .  l~U~sl J , A sin O=g (14) 
0 

where u=  UH+U22+Usa. The rotation then reduces the 
component of g about the 1 axis to zero and decreases E 
by ~A sin 2 (0/2). A succession of such rotations always 
leads to a true minimum, but the process converges slowly. 

Once the second derivative matrix T becomes positive 
definite, and the angle 0 calculated from (14) becomes small, 
it is quicker to change over to a Newton-Raphson method, 
applying rotations defined by 

0 = gT - 1. (15) 

With these tactics 6 to 10 cycles are usually sufficient, and 
the whole calculation takes about 7 seconds on an IBM 
360/44. 
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Analytic solution 

A formal solution of (I0) is V:- (U 'U)  ~/2, and R = V U  -I, 
but this leaves the signs of the square roots undefined and 
fails when U is singular. (U' is the transpose of U) 

More generally consider the matrices U'U and UU'. 
They are both symmetric and positive definite. Also the 
diagonal sums of (U'U) n and (UU') n are the same, and it 
can be shown that both matrices have the same eigenvalues. 
Therefore orthogonal matrices H, K exist, with determinant 
+ 1, such that 

UU' = H -  1D2H, U'U = K -  1D2K (16) 

where D 2 is a diagonal matrix with positive elements. 
The matrix 

M = H U K  -1 (17) 
has the property that 

M M '  = M ' M  = D 2 (18) 

and commutes with D 2. Hence, if D 2 is nondegenerate, M 
is already diagonal. If D 2 is degenerate, with eigenvalues 
D l ,  M and M'  are block-diagonal, each block being of the 
form M~ = d~Q~., where d 2= D 2 and Q~Q'z = Iz. Thus Q~ 
is orthogonal,  with determinant + 1. The matrix Q - a M  = d 
is therefore diagonal, and 

V~ = (K-  1Q- ~H)U = K -  ~dK (19) 

is symmetric. However, the transformation Q derived by 
this procedure may have determinant - 1, and the signs of 
the elements d~ may not maximize the diagonal sum of Va. 
To correct this we now construct a matrix P with all its 
diagonal elements + 1, such that Det PQ = 1 and form the 
diagonal matrix D = Pd, with D;. = + d). The correct solu- 
tion is then 

V = (K- apQ-  IH) U = K-  IDK (20) 

R = K -  ~PQ - 1H (21) 
and 

v = Da + D2 + Da • 

This is unique unless U is a singular matrix of rank 1, for 
the subspace belonging to the eigenvalue D,~ = 0 is then of 
dimension 2, and the rotation is undefined. This happens 
when the atoms of either set lie on a line. 
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A discussion is given of the relationship between diffractometer data accuracy and the average variance of 
the electron density. 

A consideration of constant-count-per-reflexion diffractom- 
eter experiments such as those performed, for example, by 
the Siemens AED System, has led Killean (1967) to show 
that to obtain data capable of yielding an R index of 0.10 
the total number of counts per reflexion need not exceed 
twenty-five, for low background reflexions, or one-hundred 
and twenty-five counts for a peak to background ratio of 
three to two. Clearly in view of these small counts no 
problem exists in the high-speed collection of data required 
only for stereochemical determination or conformation.  
The collection of data becomes more time consuming when 
the data is to be used for deductions requiring highly 
accurate electron densities. This paper is concerned with 
the mode of data collection likely to make the most effi- 
cient use of the diffractometer time available. 

The approach to the problem is entirely a priori and, as 
such, represents a basic planning approach to single-crystal 
diffractometry. It assumes low background counts and 
consequently it is likely that a monochromator  would be 
used in the experiment. The separate, but related, attempts 
of Hamilton (1967) and Shoemaker (1968) to optimize the 
collection of data for least squares analysis are a posteriori 

in that they require that the structure must have been solved 
before the data can be optimally recollected with respect 
to, for Hamilton's  treatment, the variance of one positional 
or one thermal parameter and, for Shoemaker's analysis, 
a linear combination of the weights of the various param- 
eters. 

Cruickshank (1960) has summarized the requirements 
that must be satisfied for an accurate structure determina- 
tion. It is assumed in the following analysis that these 
conditions are to be satisfied. 

Cruickshank (1949) has derived an expression for the 
variance on the electron density for centrosymmetric space 
groups and Killean & Lawrence (1969b) have modified his 
approach to take account of random errors in the phase 
angles of the structure factors for non-centrosymmetric 
space groups. Essentially when the average variance in the 
electron density is to be considered it is sufficient to use 
Cruickshank's form for PT 

where o'2(h)= variance of the structure factor. 


